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Abstract. The transformed quantum momentum function (QMF) equation presented here 
is derived by transforming the quantum momentum function while keeping the form of its 
equation and the action variable integral unchanged. This new transformed equation is 
suitable for solving quantum systems having complex turning points and more than two 
turning points. New forms of boundary conditions in the Q M F  are obtained and several 
applications of this transformed Q M F  equation are given. 

1. Introduction/overview 

In an earlier work [ 1,2], quantum action variable theory is shown to be an alternative 
method of obtaining boundstate energy eigenvalues without finding the system 
wavefunctions. In one dimension, the quantum action variable, the quantum analogue 
of the classical action variable, is defined as a contour integral 

J = - j  1 p ( x ) d x  
257. c 

where the quantum momentum function (QMF), p(x) ,  is the solution of the quantum 
momentum function equation (QMF equation), 

p c ( x )  is the classical momentum function defined as p c ( x )  = m. The contour 
C in equation (1.1) encloses the two physical turning points of pc(x). The boundstate 
boundary condition imposed upon QMF p ( x )  is 

The quantum action variable J can be used to obtain the energy eigenvalues without 
solving the Q M F  equation (1.2) as shown in [ l ]  and [2]. 

In three dimensions, if the potential is central, the QMF can be separated, and the 
radial QMF equation [2] is 

P(X) + P C ( X )  as h+0.  (1 .3)  

where p r c ( r )  is J E  - v ( r ) - [ l ( l +  l ) t i2 / rT  and p , ( r )  is the radial QMF. As in one 
dimension, the radial quantum action variable J ,  in three dimensions is .=-I 1 p , ( r ) d r  

2 r  c, 
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where C, encloses the two turning points of prC( r). The boundary condition on radial 
QMF is 

pr( r) + Prc( r )  as h+0.  (1.6) 
All the exactly solvable quantum systems discussed in [ l ]  and [2] have following 

( 1 )  all the turning points (both physical and unphysical) are real; 
(2) all the systems have two turning points, except in one system. 
The exception (u(x)  = a / x  +x*) ,  which has four turning points, has been solved 

by using symmetric properties. The major problem of solving those systems which 
have more than two turning points is in locating the moving poles of the quantum 
momentum function. When the turning points are complex, the problem becomes 
more difficult. 

In this paper we show how to solve quantum systems having more than two turning 
points and complex turning points. In section 2, we discuss the new boundary 
conditions for the QMF which can be used to evaluate the quantum action variable J. 
Section 3 shows how to make transformations on a QMF equation to eliminate the 
complex turning points and to reduce the number of turning points in the system, 
whilst keeping the contour integral J and the form of the quantum momentum function 
equation unchanged. Sections 4 and 5 contain a number of illustrations for the use 
of transformations discussed in section 3 .  Finally, in section 6, we discuss the limitations 
of this transformation method and make concluding remarks. 

properties: 

2. Boundary conditions 

The boundary condition imposed upon the QMF in [ 1 1  and [2] is p + pc as h + 0 for 
both one- and three-dimensional systems. In this section, we obtain new boundary 
conditions on the QMF which are equivalent to the boundary conditions on Schrodin- 
ger’s wavefunction U and the normalisation condition. It can be shown that these new 
boundary conditions are equivalent to the old boundary condition p + pc as h + 0. 

Consider the transformation 

or 

U = exp( f p(x)  dx). 

Substituting equation (2.1) in the one-dimensional QMF equation (1.2), we get the 
one-dimensional Schrodinger equation (2m = 1 )  

h 2  - +pf (x )u=O (3 (2.3) 

where pc(x) = The boundstate boundary condition on equation (2.3) is 

u + o  as X + o O .  (2.4) 
Using equation (2.2), the equivalent condition on p(x)  is 

i 
- h I p(x)  dx -, --CO as X+oO. (2 .5 )  
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Now consider the points where p,( x)  has real poles. The normalisation condition on 
wavefunction U demands that 

i 
- p ( x )  dx + -a 
h 

as x + real poles of p , ( x ) .  Otherwise wavefunction U will not be finite. 

011 the radial QMF p , ( r ) .  They are 
For three-dimensional radial potentials, similar boundary conditions can be derived 

I p , ( r )  d r +  -a 
h 

and 

i 
- I p , ( r )  d r -  -a 
h 

as 

as r +  real poles of classical 
The boundary conditions 

boundary conditions for the 
the next section. 

momentum function pc , (  r ) .  
derived on the QMF in this section are useful in deriving 
transformed quantum momentum function as shown in 

3. Simple transformations on the QMF equation 

In order to evaluate the quantum action variable J, one must know the locations and 
the distribution of the poles of the QMF. The locations and distribution of the moving 
poles of QMF p ( x )  (these are the poles of p(x)  which are not the poles of p , ( x ) )  are 
found by using the oscillatory theorems given in the appendix. When the systems have 
complex turning points or have more than two turning points, finding the locations 
and the distribution of the moving poles of p ( x ) ,  and hence the evaluation of quantum 
action variable J becomes impossible. In this section we show how to reduce the 
number of turning points and eliminate complex poles by transformations. 

Consider the one-dimensional QMF equation. Suppose the transformation x = g ( y )  
changes the p c ( x )  to a 'simple' form (for examples, see sections 4 and 5 ) ,  where y is 
the new variable in the quantum momentum function equation. This changes the form 
of QMF equation (1.2) and the contour integral (1.1). The form of the QMF equation 
(1.2) is important to locate the poles of the QMF by theorems given in the appendix 
and the form of the contour integral (1.1) is necessary to use the residue theorem to 
evaluate J. In order to keep the form of (1.1) and (1.2) unchanged, the quantum 
momentum function has to be transformed. Consider the transformation 

(3 .1)  

where p ( y )  and P ( y )  are the old and new quantum momentum functions respectively. 
The functions a ( y )  and b ( y )  are found by substituting (3.1) in (1.1) and (1.2) and 
imposing the condition that the forms of the contour integral (1.1) and the equation 
(1.2) are invariant. This results in 

P ( Y )  = a ( y ) P ( y )  + N y )  
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and 

Hence the transformed QMF equation becomes 

hg"' 3 h g" + P ' ( y )  = [ E  - vg(y)]g'2+--- (4 = Pf(y) 
i (  dy ) [ 2g 4 g 

and the quantum action variable integral becomes 

(3.3) 

(3.4) 

where the contour C, encloses the two physical turning points of the new P,(y). 
Consider the transformations r = g ( y )  and P ( y )  = a ( y ) p ( y ) +  b ( y )  on the three- 

dimensional radial Q M F  equation. Imposing the condition that the form of the radial 
QMF equation and the contour integral for J ,  are unchanged, we obtain the transformed 
radial quantum momentum function equation 

- -  hg"' 3 h 2  ("3'1 
i (  dy ) [ 2g 4 g 

dP(y) + P ' ( y )  = [ E  - u g ( t ~ ) ] g ' ~ + - - -  7 = Pf,(y). 

Under these transformations, the quantum action variable integral is 

where the contour C,,(y) encloses the two physical turning points of P,,(y).  These 
transformed equations are easier to solve than the original equations, for a wide range 
of potentials. 

Before leaving this section, let us consider the boundary conditions on the transfor- 
med quantum momentum function P ( y )  with respect to the new variable y.  In variable 
y ( 2 . 2 )  becomes 

U = exp(: 5 P ( y )  dy +$n g ' ) .  (3.8) 

Then the boundary conditions on transformed QMF P becomes 

h 1 P ( y )  dy+f ln  g '+ --CO (3.9) 

as y + w  or y +  any pole of p , ( y ) .  In three dimensions, the boundary conditions on 
the transformed radial QMF are 

1 P ( y )  dy+f ln  g'+ --cy, 
h (3.10) 

as y+m,  y+O, or y - ,  any pole of P,,(y).  In the next section we show how these 
transformations and boundary conditions are used to evaluate quantum action variable 
and hence get the bound-state energy eigenvalues for a range of potentials. 
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4. Illustrations: one dimension 

The ‘barrier oscillator’ potential is defined as v(x) = a2 /x2+x2 .  This system has four 
turning points and can be solved by using its symmetric properties [2]. As for the first 
illustration we solve this system by the transformed Q M F  equation (3.4). Under the 
transformation x = g ( y )  = 6, the transformed quantum momentum function for the 
barrier oscillator becomes 

where 

E a 2  1 3h’ 
4y 4y2 4 16y2’ 

p’(y) = +- 

The new classical momentum function P,(y) now has two real turning points unlike 
the original system which had four turning points. The oscillatory theorems in the 
appendix can be used to prove that there are no poles of P ( y )  present in the complex 
y plane except at y = 0, y = CO (fixed poles), and on the real axis between two turning 
points (moving poles). 

J has the value nf i  which corresponds to the contour C enclosing n moving poles 
of P ( y )  ( n  = 0 , 1 , 2 .  . . ). As in [l], we evaluate the contour integral for J by distorting 
the contour C to enclose poles at y = 0 and y = CO. Let Jo and J,  be the contributions 
from poles at y = 0 and y = CO respectively. J, is calculated by expanding P ( y )  near 
the origin. Let 

P ( y )  = a-,y-’+ a,+. . . . (4.3) 

Substituting (4.3) in (4.1) and equating coefficient of Y - ~ ,  we get 

a - , = ; * $ L m p .  

The boundary condition (3.9) is satisfied only by 

Since the distorted contour encloses the pointy = 0 in the clockwise direction, Jo = -ia-, 
and hence 

- h  1J- 
a’+ h2/4. J --_- 

O - 2  2 (4.5) 

J,  is calculated by making the transformation s = l/r. Under this transformation (4.1) 
becomes 

P 2 ( s )  Pf(l/s)  
+s2=- S2 

(4.6) 

where 

2 Es a’s2 1 3h2s2  
P,( l / s )  =-----+- 

4 4 4 1 6 ’  (4.7) 
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Now we expand P(s )  near s = 0 as 

P ( s ) = a , + a , s +  . . .  * (4.8) 

Substituting (4.8) in (4.7) and equating the coefficient of C2, we get a,= *i/2 and 
a ,  = E / 8 a 0 .  The boundary condition (3.9) is satisfied only by a,=i/2.  Therefore 

E 
J,=-. 

4 (4.9) 

Summing Jo and J ,  gives 

J = E -  2 -1 ,/-. (4.10) 
4 2 2  

Since J is also nh, equating two forms of J gives the bound-state energy 

E =2(2n + 1)h + 2 L z T 7 i  (4.11) 

The second illustration is the one-dimensional Poschl-Teller potential hole 

a b 
sin a x  cos-ax 

u(x> =r+- (4.12) 

where a and b are positive real constants. The p,(x) has an infinite number of turning 
points. The number of turning points is reduced to two by the transformation x = g ( y )  = 
a-’ sin-lfi. The transformed QMF equation for this potential is (4.1) with 

hZ 3 h 2  - +- 
4 a 2 y ( l - y ) - 4 a 2 y 2 ( 1 - y ) - 4 a 2 y ( l - y ) 2  4y( l -y )  16y” 

E a b 
Pf = 

This system has three fixed poles of P at y = 0, y = 1, and y = 03 and moving poles 
between two turning points. Thus J = Jo+ J ,  + J, where J o ,  J1, and J, are the contribu- 
tion from poles of P(y)  at y = 0, y = 1 and y = CD respectively. Following the same 
procedure used in the first illustration we get 

J - _ - _  h m  
2 2a 0- (4.13) 

h J b + h 2 a 2 / 4  
2 2a 

J - --_  
1 -  

and 

h v E  J =-+--. 
2 2a  

Hence the quantum action variable J is 

J=-+---- h f i  h J a + h 2 a 2 / 4  --- h J b + h 2 a 2 / 4  
2 2 a  2 2a 2 2a  

For convenience take a = h 2 a 2 P ( P  - 1 )  and b = h2a2A(A - 1 ) .  Thus we have 

f i  d? h ( A + P )  
2 2a  2 ,  

J=-+-- 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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Since J = nh, we obtain the boundstate energy E as 

E = h2a2(2n+A +p) ’  (4.18) 

where n = 0, 1 ,2 , .  . . . 
The last one-dimensional illustration is the ‘cosh’ potential [3]. This system also 

has an infinite number of complex turning points. Consider the transformation x =  
g(y) = a-’ cosh-’+, where the transformed QMF equation is (4.1) with 

E - h ’ ~ ( h - 1 )  h2  +- 3h2  
4 a 2 y ( l  - y )  4y2(1 -y )  -4y(l  - y )  16y” P3Y) = (4.19) 

As in the two previous systems, this system has two real turning points. The P (y )  has 
three poles at y = 0, y = 1, and y = CO as in the previous illustration. Thus J = Jo + Jl + J ,  
and J o ,  J1, and J ,  are evaluated as before. The result is 

and 

3h hA 
4 2  

J - --+- 
0 -  

-h  -3h 
J,=-or- 

4 4  

(4.20) 

(4.21) 

(4.22) 

where K = +a. J1 has two possible values and both of these values agree with the 
boundary condition (3.3). Therefore 

or 

hh K f f  J = - h + - - -  
2 2 ‘  

(4.23) 

(4.24) 

The bound-state energies are found by combining (4.22), (4.23) and J = nh. 

E = - a 2 h 2 ( A  - 1 - n )  (4.25) 

with A - 1 2  n. Note that the condition A - 1 a n is obtained by using the fact that K 3 0. 

5. Illustrations: three dimensions 

Two illustrations are given in this section to show how to use the transformed radial 
QMF equation to evaluate the contour integral for J,. Both systems are solved for S 
states ( I  = 0). 

The first 3~ illustration is the Morse potential. The potential is 

u ( r )  = .( enp[ - 2 a ( y ) ]  - 2  exp[-a(-)]}, 
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Consider the transformation r = g ( y )  = ro-  a-'r0 ln(y). The transformed radial QMF 
equation is 

h = + P ? ( y ) = P ? , ( y )  
i (  dr ) 

where 

AE 2DA h2 
P s , ( y )  =-- DA +- 

Y 2  y +41'2 
and A = r i /a2 .  

This system has two real turning points and the method of evaluating quantum 
action variable J, is same as in the I D  case. This system has two fixed poles at y = 0 
and y = a .  Thus J =  Jo+Je .  Expanding P,(y) at y = O  and y = a  and applying 
boundary conditions (3.10), we get 

-h  
2 

J ~ = - - K ~  

and 

J,= -dDT 
where K =-. Thus 

-h  
2 

J =-- ~di+dTZi 

J is also nh where n = 0, 1,2, . . . . Bound-state energies are given by 

(5.3) 

( 5 . 4 )  

( 5 . 5 )  

For convenience, we introduce U ,  p, and 6 (see [3]) 

E in these parameters is 

(5.7) 

The last illustration is the Hulthhn potential 
e- r la  

U( r )  = -yo - 1 - e- r /a  ( 5 . 8 )  

The suitable transformation is r = g ( y )  = -a  ln(y). The transformed radial QMF 
equation is (5.2) with 

Ea2 vOa2 h2  
P f ( y )  =2+- +I. 

Y Y ( 1 - Y )  4Y 
This system has two turning points; one is at 

Y = ( ;:.22:3 
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and the other is at 00. P,(y) has three fixed poles at y = 0, y = 1, and y =CO, where 
J = Jo + J ,  + J ,  and J o ,  J ,  , and J ,  are calculated as before. The result is 

-h  
Jo = - - Ka 

2 

J1 = - h  

and 

J , = ! + a G  

where K =a. Thus the quantum action variable is 

J ,  = -Ka - h + a G o .  

(5 .9 )  

(5.10) 

( 5 . 1 1 )  

(5.12) 

For convenience we introduce a new parameter p where p = voa2 /h2 .  The bound-state 
energy is found in terms of p 

v o [ p 2 -  ( n  - I ) ~ ] *  
2 p ( n + 1 ) ’  ’ 

E = -  (5.13) 

6. Conclusions 

In this paper, a new form of boundary conditions is introduced to the QMF. These 
conditions are extended to deal with the transformed QMF equation. Illustrations given 
in the last two sections show how the transformed QMF equation can be used to evaluate 
the quantum action variable J for a wide range of potentials, most of which cannot 
be solved by the direct method ( [ l ]  and [ 2 ] ) .  

For certain potentials one cannot find a suitable transformation to make the system 
exactly solvable. However in most of these cases the transformed quantum momentum 
function equation combined with the quantum action variable perturbation theory [ 4 ]  
can be used to find the approximate bound-state energy eigenvalues. 

Appendix 

The following theorems on the zeros of second-order differential equations are useful 
in determining the distribution of poles of the quantum momentum function [ 5 , 6 ] .  
To apply these theorems one uses the relation p ( x )  = (h/ i )u’(x) /u(x)  where p ( x )  is 
the QMF and U is the solution of the second-order Schrodinger equation. 

Theorem 1 .  Consider the equation 

d*u(x) 
dx’ 

+J (x )u (x )=O.  

Suppose J is continuous and bounded in the interval a d x d b and let g be the upper 
bound of J in this interval. A sufficient condition that the solution of the above 
equation should have at least m zeros in ( a ,  b )  is that 

g z  m 2 r 2 / ( b - a ) * .  
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Consider the differential equation 

d2u(z) 
dz2 

+J (z )u (z )  = o .  

Theorem 2. If throughout the interval (a, b )  [on the Re z axis], either Re J ( z ) s O  or 
Im J ( z )  does not change the sign, then there can be at most one zero of w dw/dz in 
that interval. 

Theorem 3. If w(z) is a solution which is real on a segment (a, b )  of the real axis; if, 
further, T is a region symmetrically situated with respect to the real axis, and such 
that every line perpendicular to the real axis which cuts the region cuts its boundary 
in two points and meets ( a ,  b )  in an interior point; and if finally Re J( z )  b 0 throughout 
T, then w(z) can have no complex zero or extremum in T. 

Theorem 4. Let the region T be as before, and let w(z) be a solution, real on the 
segment ( a ,  b )  and such that in (a, 6)  w dw/dz has a fixed sign; let Im J ( z )  have this 
sign throughout that part of the region T which lays above the real axis, then w ( z )  
can have no complex zero or extremum in T. 

Theorem 5. If J ( z )  is analytic in a domain D bounded by an analytic Jordan curve 
r, and if 

then equation ( A l )  is non-oscillatory in D. In [2], illustrations are given to show how 
some of these theorems may be employed to find the distribution of poles of the QMF. 
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